

January 26, 2021

Vallco Property Owner, LLC 2600 El Camino Real Palo Alto, CA 94304 Attn: Reed Moulds

Subject: Soil Vapor Investigation Report Former Vallco Mall, Cupertino, California

Dear Mr. Moulds,

On behalf of Vallco Property Owner LLC (VPO), WSP USA Inc. (WSP) has prepared this Soil Vapor Investigation Report for an area within the Former Sears Automotive Center on the Former Vallco Mall Site (the Vallco Site) located at 10123 North Wolfe Road in Cupertino, California. The purpose of this investigation was to assess concentrations of potential volatile organic compounds (VOCs) in soil vapors in the northern portion of the former Sears Automotive Center. This report documents investigation activities that took place on November 22-23, 2020 and presents analytical results from the investigation, as well as steps going forward to address these results as part of the redevelopment of the Vallco Site.

BACKGROUND & INVESTIGATION APPROACH

The Vallco Site is anticipated to be used for commercial and residential buildings, subsurface and surface parking areas, and landscaping. In September 2018, the City of Cupertino (the City) approved a project for the Site that will include 2,402 residential units, up to 485,912 square feet of retail/entertainment uses, and 1,981,447 square feet of office uses. Approximately 10,500 parking spaces will be provided in both above-and below ground structures.

Planned development includes extensive subsurface parking that will require excavation of soil to a depth of 20 to 32 ft-below ground surface (bgs) across much of the Site. Specifically, the excavation within the Former Sears Automotive Center (Sears Area) will be to a depth of 32 ft bgs. Buildings above an underground parking structure will be constructed within the Sears Area.

The Sears Automotive Center was constructed in 1970 on the southwest side of the Mall property and was later referenced as a closed Leaking Underground Storage Tank (LUST) site on the state Geotracker website. This designation was a result of the removal of six underground storage tanks (UST) in 1985 and dispenser island and product lines in 1994. The Santa Clara County Fire Department (SCCFD) required implementation of an approved closure plan for the demolition of the former Sears Automotive Center due to the presence of an oil-water separator, hydraulic lifts, petroleum fluid pipelines, battery storage area, and lead containing materials. A Closure Plan for the Former Sears Automotive Center was submitted to the SCCFD on March 25, 2019 and approved by the SCCFD by letter dated April 11, 2019 and included soil sampling under the oil-water separator, remnant piping and any other subsurface equipment for proper characterization and subsequent disposal.

Consistent with the Closure Plan, soil samples were collected beneath an oil-water separator, acid neutralization chamber, and 17 hydraulic lifts during building demolition in January through February 2020 to determine if these features had impacted surrounding soil. All soil samples collected were analyzed for the following list of compounds:

- Total petroleum hydrocarbons (TPH) as gasoline (TPH-g), TPH as diesel (TPH-D), and TPH as motor oil (TPH-MO) by U.S. Environmental Protection Agency (EPA) method 8015 (fuel scan)
- Hexane Extractable Materials (Oil and Grease) by EPA method 1664
- Volatile Organic Compounds (VOCs), with chlorinated hydrocarbons (full scan) by EPA method 8260B
- Polychlorinated biphenyls (PCB) by EPA method 8082A
- Cadmium (Cd), Chromium (Cr), Lead (Pb), Nickel (Ni), and Zinc (Zn) by EPA method 6010B
- Semi Volatile Organic Compounds (SVOCs) including Polycyclic Aromatic Hydrocarbons (PAHs) by EPA method 8270

Samples collected from beneath the acid neutralization chamber and the base of 11 hydraulic lifts after their removal, all located on the basement level in the southern portion of the former Sears Automotive Center, did not contain any detections above the respective ESL/RSLs for any of the compounds included in the analysis listed above. After the removal of six hydraulic lift cylinders in the northern portion of the former Sears Automotive Center, samples were taken at three of the six cylinders (locations HL-1, HL-4, and HL-6 and all soil sample locations are shown on Figure 1) at approximately nine ft-bgs, which is from the soils immediately beneath the base of three of these cylinders. After the removal of the oil-water separator and associated piping, three samples were taken approximately 12 to 14 ft-bgs which is immediately beneath the separator and piping. Several of these samples yielded results that exceed the PCB ESL/RSL; two of three samples beneath the oil-water separator also exceeded the TSCA cleanup level of 1 mg/kg for PCBs. Two samples collected at a depth of nine ft-bgs, immediately below each of two (HL-4 and HL-6) of the three former hydraulic lift cylinders, exceeded the RSL for TPH-D. Soil samples from HL-4 also contained 1,1-dichloroethane (48 μ g/kg) and tetrachloroethene (41 μ g/kg), well below their respective ESL/RTSLs (3,600 μ g/kg and 590 μ g/kg).

In response to the detections of PCBs above the ESL/RSL, 22 step-out borings were advanced in the northern portion of the Center to delineate the extent of PCB impacted soil and to sample under the remaining three former hydraulic lifts, HL-2, HL-3, and HL-5 (Figure 1). Details concerning the results of the step-out sampling and the proposed removal actions associated with the PCB detections are detailed in the Appendix A of the Excavation Management Plan, Revised January 2021.

Although the VOCs detected in soil at HL-4 were below residential ESLs/RSLs and recognizing that the area will be excavated as part of development, in discussion with the Santa Clara County Department of Environmental Health (SCCDEH) and the City of Cupertino in December 2020, it was agreed that it would be prudent to collect soil vapor samples in the Sears Area to better understand if potential VOC source soils may be present. Thus, four multi-depth soil vapor borings (SV-1 through SV-4 in Figure 1) were installed on November 22-23, 2020 to a maximum depth of 29 to 30 feet bgs within the Sears Area planned for excavation.

SOIL STRATIGRAPHY AND GROUNDWATER OCCURRENCE

The four soil borings drilled for the soil gas probes encountered silts and clays with varying percentages of sand from ground surface to approximately 17 ft-bgs (Appendix A). A zone of coarser grained soils (i.e., sand and gravel) was encountered between approximately 17 and 21 ft-bgs, below which was another clayey zone that extended to a depth of approximately 28 ft-bgs. A second coarse-grained unit

comprised of well-graded sand and gravel was encountered at 28 ft-bgs and continued to the bottom of the borings, which were terminated at 31 ft-bgs. Two of the four nested soil gas probes installed in each boring were installed in the two coarse-grained units, in additional to the finer-grained material that occurred in the upper 15 feet of the soil profile.

Groundwater was not encountered during the drilling of the soil borings. Historic information for the Site indicates that groundwater is found between 80 to 90 ft-bgs.

DESCRIPTION OF FIELD ACTIVITIES

On November 22 and November 23, 2020, WSP retained Trinity Drilling to install four nested multidepth soil gas monitoring wells (SV-1 to SV-4) in order to develop an understanding of conditions beneath the current northern area of the former Sears Automotive Center (Figure 1).

Before intrusive activities began, the boring locations were cleared for underground utilities and an underground service alert was contacted to locate underground utilities and to mark utility trenches coming onto the property. The drilling work was conducted by Trinity Drilling of Santa Cruz who is a California C-57 licensed driller. The investigation was performed under the direction of a licensed California professional geologist.

SOIL GAS PROBE INSTALLATION

Soil gas probes were installed generally at the following depth intervals: 5-6 ft-bgs, 12-14 ft-bgs, 19-21 ft-bgs, and 29-30 ft-bgs.

DRILLING PROCEDURES

A GeoProbe® 5400 direct push drill rig was used to advance each boring down to the desired depth. The drill rig was equipped with a 4-foot Macro Core® continuous core sampler with acetate sleeves, which created a 2.5-inch diameter hole.

At each sampling location, a boring was advanced and the remaining multi-depth probes were installed. The target depths for the well screens were sometimes adjusted slightly based on the observations made from the soil core.

DECONTAMINATION PROCEDURES

All subsurface drilling equipment was decontaminated before use at the site. During the course of the investigation, the drillers utilized both wet and dry techniques to decontaminate equipment. Disposable equipment intended for one-time use was not decontaminated but was packaged for appropriate disposal by Trinity Drilling.

The sampling rod went through a wet decontamination between each boring location and either a wet or dry decontamination between each boring run advancement depending on whether soil was sticking to the inside of the sampling rod. The shoe of the sampling rod went through a wet decontamination after each run and between boring locations.

A wet decontamination was completed by scrubbing the equipment in a non-phosphate detergent followed by two separate tap-water rinses. Dry decontamination was completed by scrubbing the equipment with a dry wire brush.

SOIL GAS WELL CONSTRUCTION DETAILS

The nested soil gas monitoring wells were constructed using ¹/₄-inch diameter NylaflowTM sample tubing with a one-inch long stainless steel filter screen inserted at the bottom. The tubing was inserted into the open boring by hand. Approximately 6-inches of clean, graded, kiln dried, #3 silica sand was poured 0.5 foot above and below the screened tip. Bentonite granules (Benseal Sealing and Plugging Agent) were placed within the annular space above the sand pack and between the screened intervals (*e.g.*, for nested wells). The bentonite granules were hydrated every 1 to 1.5 feet using a tremie pipe for probes deeper than 10 feet bgs. At the top of the soil gas well, the remaining annulus was filled with 1 to 5% bentonite-cement slurry with some fine sand added for strength.

At the well head, a two-way polycarbonate stop valve was attached to the sample tubing on each individual well to create a seal and facilitate sample collection. As each probe was installed, the end of the sampling tube was capped to prevent outside contamination until the stop valve could be attached.

INVESTIGATION DERIVED WASTE

All soil cuttings, decontamination and rinse water, cement cores, and disposable equipment were contained in separate Department of Transportation authorized drums. The drums were temporarily placed in a secure area on-site. The waste was disposed of in accordance with applicable local, state, and federal regulations.

SOIL GAS SAMPLE COLLECTION AND ANALYSIS

Soil gas samples were collected in Summa canisters following a minimum of two hours of equilibration between installation of the probe and sampling These sampling protocols were in general accordance with the California Environmental Protection Agency's (CalEPA) Active Soil Gas Investigation Advisory, dated July 2015 (CalEPA, 2015). Summa canisters were batch-certified as clean at the specified reporting limits. The Soil Vapor Monitoring Field Sheets are included in Appendix A.

A shut-in test of the sampling manifold was performed before sampling each probe. Helium gas was used during sampling as a leak check compound to determine if the soil gas probes were compromised. A helium shroud was constructed over top of the well head of each probe using plastic sheeting. An atmosphere of at least 20 % helium was maintained inside the shroud during sampling. A helium meter was used to measure the concentration of helium in the shroud. The concentrations of helium were documented on the Soil Vapor Monitoring Field Sheets included in Appendix A.

Soil gas borings were purged at a flow rate of either 100 or 200 milliliters per minute and a vacuum of less than 100 inches of water was maintained during purging and sampling. Three probe (well) volumes were purged from each boring before collecting the soil gas sample. Samples were collected in 1-liter Summa canisters.

Immediately following collection, the samples were packaged and shipped to Enthalpy Laboratories for analysis for VOCs using EPA Method TO-15 and helium by ASTM D1946.

SOIL GAS ANALYTICAL RESULTS AND DISCUSSION

A summary of soil gas analytical results for VOCs is presented in Table 1. Results were compared to the existing applicable residential screening levels (ESLs).

The compounds noted with bold type in Table 1 were detected in at least one sample at a concentration greater than the laboratory method detection limit (MDL). The compounds noted in bold type with yellow shading indicate that the detected concentration exceeded the RSL.

The compounds with exceedances, showing the residential ESL, SV-boring number-depth, and exceedance result include the following:

- Methylene Chloride: (ESL 34 μ g/m³), SV-3-21, 52 μ g/m³
- $Chloroform (ESL 4.1 \ \mu g/m^3): SV-2-14, 93 \ \mu g/m^3; SV-3-4, 140 \ \mu g/m^3; SV-3-15, 160 \ \mu g/m^3; SV-4-5, 9.5 \ \mu g/m^3; SV-4-12, 370 \ \mu g/m^3; and SV-4-20, 5 \ \mu g/m^3$
- Benzene (ESL 3.2 μg/m³): SV-2-14, 61 μg/m³; SV-2-30, 6 μg/m³; SV-3-12, 20 μg/m³; SV-4-12, 27 μg/m³
- Tetrachloroethene (ESL 15 μ g/m³): SV-3-12, 30 μ g/m³; SV-3-21,190 μ g/m³; SV-4-30, 19 μ g/m³

Ethylbenzene (ESL 37 μ g/m³): SV-2-14, 100 μ g/m³

Of these compounds, only PCE was detected in the soil sample at location HL-4 and the highest soil vapor concentrations were near HL-4 and the oil-water separator. Overall, these ESL exceedances are consistent with low VOC levels found in one soil sample from HL-4 and are not indicative of source level VOCs in the subsurface (notably benzene and PCE are at multiple depths in two borings). Methylene chloride and ethyl benzene were isolated results in two different borings and chloroform could be an artifact from potable water.

It should also be noted that the MDLs for one or more samples shown as "undetected" for the following compounds exceeded the respective ESL for these compounds:

- 1,4-Dioxane
- Vinyl Chloride
- 1,1-Dichloroethane
- Chloroform
- Carbon Tetrachloride
- Benzene
- 1,2-Dichloroethane
- Trichloroethene
- 1,2-Dichloropropane
- Bromodichloromethane
- 1,1,2-Trichloroethane
- Tetrachloroethene
- 1,2-Dibromoethane
- Hexachlorobutadiene

REMOVAL ACTIONS AND VERIFICATION SAMPLING

As noted, as part of the redevelopment of the Sears Area per VOP's development plan, excavation and disposition of removed soils will be performed to a depth of 32 ft bgs in this Area. This excavation should effectively remove soils containing soil vapors that exceed ESLs. To verify residual VOC concentrations in soil vapor in the soils below 32 ft bgs, soil vapor samples will be collected on a grid over the 10 foot by 20 foot excavation rectangle to a depth of 5 feet below the base of the removal excavation (a total of approximately four to six samples is anticipated) and analyzed for soil vapors using USEPA Method 8260B (gas chromatograph/mass spectrometer [GC/MS]) modified for soil gas. Based on the available soil vapor data, significant vapor intrusion is not anticipated to occur in the planned development due to the presence of the ventilated underground garage structure below all of the occupied residential space. However, if the soil vapor verification samples exhibit levels of concern (exceeding ESLs) for any compound, indoor air monitoring will be conducted within the garage to determine if significant soil vapor intrusion is occurring within the garage.

Please don't hesitate to contact us if you have any questions or need additional information.

Sincerely,

Ruhard E. Greudenberge

Richard E. Freudenberger Managing Director, Regional 408.206.3504

Figure

Figure 1 - Sears Investigation Areas and Soil Vapor Borings

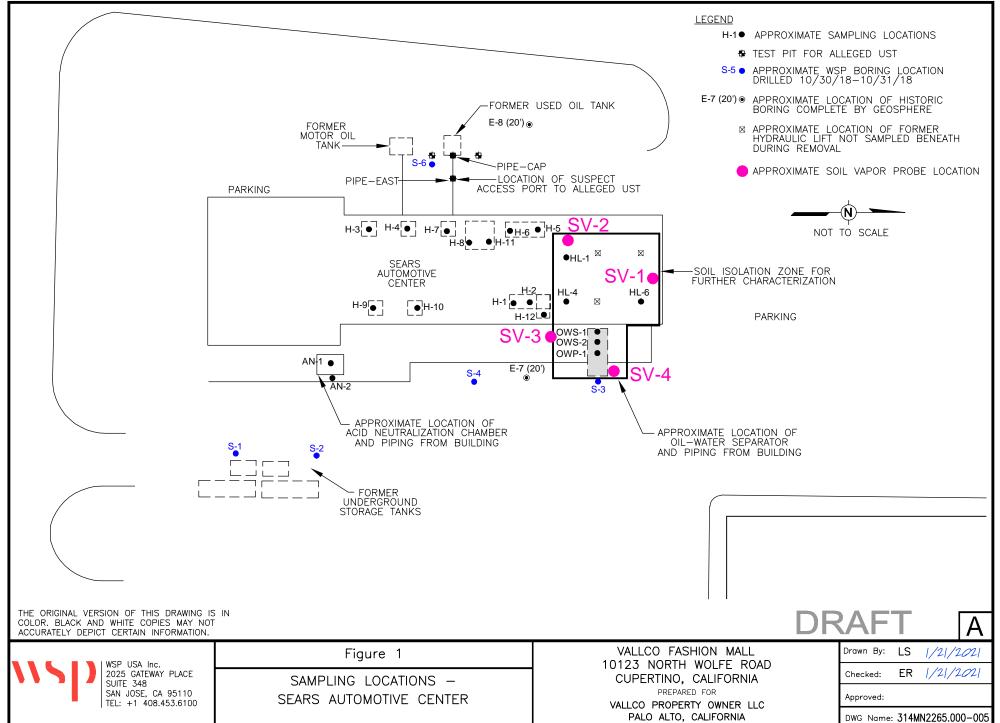

Table

Table 1 – Soil Gas Analytical Results

Appendix A

Soil Vapor Monitoring Field Sheets and Boring Logs

R:\Acad\CADD_CLIENTS\VALLCO FASHION MALL\31402265.000\CADD\314MN2265.000-005.dwg 1/21/2021 4:11 PM Usis01166

Table 1

Summary of Sears Closure Soil Vapor Data Soil Vapor Investigation Report Former Vallco Mall, Cupertino, California

	Sa	ample ID ^[3]	SV-1-5	SV-1-13	SV-1-19	SV-1-30	SV-2-4	SV-2-14	SV-2-20	SV-2-30	SV-3-4	SV-3-12	SV-3-21	SV-3-30	SV-4-5	SV-4-12	SV-4-20	SV-4-30	SV-4-300
Analyte ^{[1][2]}	CAS No.	ESLs ^[4]	(µg/m ³)	(µg/m³)	(µg/m ³)	(µg/m ³)													
1,4-Dioxane	123-91-1	1.2E+01	58 U	58 U	0.48 U	58 U	58 U	58 U	0.24 U	0.3 U	58 U	0.48 U	0.96 U	0.48 U	0.12 U	1.2 U	0.24 U	0.48 U	0.48 U
Propylene	115-07-1		2500	4200	0.22 U	5.5 U	3500	6700	0.11 U	0.14 U	1600	0.22 U	0.44 U	0.22 U	0.055 U	0.55 U	0.11 U	0.22 U	0.22 U
Freon 12	75-71-8		16 U	16 U	0.46 U	16 U	16 U	4.6 U	15	11	16 U	0.46 U	0.91 U	17	2.5	1.1 U	0.23 U	12	12
Freon 114	76-14-2		22 U	22 U	1.2 U	22 U	22 U	12 U	0.58 U	0.72 U	22 U	1.2 U	2.3 U	1.2 U	0.29 U	2.9 U	0.58 U	1.2 U	1.2 U
Chloromethane	74-87-3	3.1E+03	6.6 U	6.6 U	0.62 U	6.6 U	6.6 U	6.2 U	0.31 U	0.39 U	6.6 U	0.62 U	1.2 U	0.62 U	0.15 U	1.5 U	0.31 U	0.62 U	0.62 U
Vinyl Chloride	75-01-4	3.2E-01	8.2 U	8.2 U	0.25 U	8.2 U	8.2 U	2.5 U	0.13 U	0.16 U	8.2 U	0.25 U	0.51 U	0.25 U	0.064 U	0.64 U	0.13 U	0.25 U	0.25 U
1,3-Butadiene	106-99-0		7.1 U	7.1 U	0.23 U	7.1 U	7.1 U	2.3 U	0.12 U	0.15 U	7.1 U	0.23 U	0.47 U	0.23 U	0.058 U	0.58 U	0.12 U	0.23 U	0.23 U
Bromomethane	74-83-9	1.7E+02	12 U	12 U	0.75 U	12 U	12 U	7.5 U	0.38 U	0.47 U	12 U	0.75 U	1.5 U	0.75 U	0.19 U	1.9 U	0.38 U	0.75 U	0.75 U
Chloroethane	75-00-3	3.5E+05	8.4 U	8.4 U	0.89 U	8.4 U	8.4 U	8.9 U	0.44 U	0.55 U	8.4 U	0.89 U	1.8 U	0.89 U	0.22 U	2.2 U	0.44 U	0.89 U	0.89 U
Trichlorofluoromethane	75-69-4		18 U	18 U	520	390	18 U	6.9 U	240	63	300	830	1500	960	46	1.7 U	550	900	910
1,1-Dichloroethene	75-35-4	2.4E+03	13 U	13 U	1 U	13 U	13 U	10 U	0.52 U	0.65 U	13 U	1 U	2.1 U	1 U	0.26 U	2.6 U	0.52 U	1 U	1 U
Freon 113	76-13-1		25 U	25 U	0.83 U	25 U	25 U	8.3 U	0.41 U	0.52 U	25 U	0.83 U	1.7 U	0.83 U	0.21 U	2.1 U	0.41 U	0.83 U	0.83 U
Acetone	67-64-1	1.1E+06	95 U	640	76	2900	95 U	9.5 U	0.47 U	69	2800	110	1.9 U	60	17	210	30	41	43
Carbon Disulfide	75-15-0		64	110	0.28 U	10 U	410	180	0.14 U	4.8	10 U	94	0.57 U	0.28 U	2.6	28	8.1	0.28 U	0.28 U
Isopropanol (IPA)	67-63-0		98 U	98 U	0.61 U	98 U	98 U	6.1 U	0.31 U	0.38 U	98 U	40	1.2 U	0.61 U	0.15 U	1.5 U	0.31 U	0.61 U	36
Methylene Chloride	75-09-2	3.4E+01	11 U	11 U	0.51 U	11 U	11 U	5.1 U	0.25 U	0.32 U	11 U	14	52	0.51 U	4.9	1.3 U	0.25 U	14	0.51 U
trans-1,2-Dichloroethene	156-60-5	2.8E+03	13 U	13 U	0.47 U	13 U	13 U	4.7 U	0.23 U	0.29 U	13 U	0.47 U	0.93 U	0.47 U	0.12 U	1.2 U	0.23 U	0.47 U	0.47 U
MTBE	1634-04-4	3.6E+02	12 U	12 U	0.27 U	12 U	12 U	2.7 U	0.14 U	0.17 U	12 U	0.27 U	0.54 U	0.27 U	0.068 U	0.68 U	0.14 U	0.27 U	0.27 U
n-Hexane	110-54-3		11 U	230	9.5	11 U	450	740	0.18 U	75	240	60	0.72 U	0.36 U	3.6	190	0.18 U	0.36 U	0.36 U
1,1-Dichloroethane	75-34-3	5.8E+01	13 U	13 U	0.47 U	13 U	13 U	4.7 U	0.24 U	0.3 U	13 U	0.47 U	0.95 U	0.47 U	0.12 U	1.2 U	0.24 U	35	35
Vinyl Acetate	108-05-4		140 U	140 U	0.27 U	140 U	140 U	2.7 U	0.14 U	0.17 U	140 U	0.27 U	0.54 U	0.27 U	0.068 U	0.68 U	0.14 U	0.27 U	0.27 U
cis-1,2-Dichloroethene	156-59-2	2.8E+02	13 U	13 U	0.38 U	13 U	13 U	3.8 U	0.19 U	0.24 U	13 U	0.38 U	0.76 U	0.38 U	0.095 U	0.95 U	0.19 U	28	28
2-Butanone	78-93-3	1.7E+05	120 U	120 U	1.3 U	120 U	120 U	13 U	0.66 U	21	120 U	1.3 U	2.7 U	1.3 U	7.6	65	16	1.3 U	1.3 U
Ethyl Acetate	141-78-6		140 U	140 U	1.1 U	140 U	140 U	11 U	0.54 U	58	180	270	340	33	0.27 U	2.7 U	0.54 U	48	1.1 U
Chloroform	67-66-3	4.1E+00	16 U	16 U	0.4 U	16 U	16 U	93	0.2 U	0.25 U	140	160	0.8 U	0.4 U	9.5	370	5	0.4 U	0.4 U
1,1,1-Trichloroethane	71-55-6	3.5E+04	17 U	17 U	0.77 U	17 U	17 U	7.7 U	0.39 U	0.48 U	17 U	0.77 U	1.5 U	30	0.19 U	1.9 U	5.6	50	51
Cyclohexane	110-82-7		11 U	11 U	0.66 U	11 U	1300	3000	6.2	59	11 U	32	1.3 U	0.66 U	0.16 U	48	0.33 U	0.66 U	0.66 U
Carbon Tetrachloride	56-23-5	1.6E+01	20 U	20 U	0.57 U	20 U	20 U	5.7 U	0.29 U	0.36 U	20 U	0.57 U	1.1 U	0.57 U	0.14 U	1.4 U	0.29 U	0.57 U	0.57 U
Benzene	71-43-2	3.2E+00	10 U	10 U	0.24 U	10 U	10 U	61	0.12 U	6	10 U	20	0.48 U	0.24 U	2.6	27	2.8	0.24 U	0.24 U
1,2-Dichloroethane	107-06-2	3.6E+00	13 U	13 U	0.59 U	13 U	13 U	5.9 U	0.3 U	0.37 U	13 U	0.59 U	1.2 U	0.59 U	0.15 U	1.5 U	0.3 U	0.59 U	0.59 U
n-Heptane	142-82-5		13 U	72	7.8	13 U	13 U	180	0.22 U	20	94	85	0.88 U	0.44 U	0.11 U	180	0.22 U	0.44 U	0.44 U
Trichloroethene	79-01-6	1.6E+01	17 U	17 U	0.69 U	17 U	17 U	6.9 U	0.34 U	0.43 U	17 U	0.69 U	1.4 U	0.69 U	0.17 U	1.7 U	0.34 U	0.69 U	0.69 U
1,2-Dichloropropane	78-87-5	9.4E+00	15 U	15 U	0.57 U	15 U	15 U	5.7 U	0.28 U	0.35 U	15 U	0.57 U	1.1 U	0.57 U	0.14 U	1.4 U	0.28 U	0.57 U	0.57 U
Bromodichloromethane	75-27-4	2.5E+00	21 U	21 U	0.51 U	21 U	21 U	5.1 U	0.25 U	0.32 U	21 U	0.51 U	1 U	0.51 U	0.13 U	1.3 U	0.25 U	0.51 U	0.51 U
cis-1,3-Dichloropropene	10061-01-5		15 U	15 U	0.85 U	15 U	15 U	8.5 U	0.43 U	0.53 U	15 U	0.85 U	1.7 U	0.85 U	0.21 U	2.1 U	0.43 U	0.85 U	0.85 U
4-Methyl-2-Pentanone	108-10-1	1.0E+05	13 U	13 U	0.66 U		13 U	6.6 U			13 U				0.17 U			0.66 U	
Toluene	108-88-3	1.0E+04	12 U	12 U	9.1	12 U	150	470	11	17	12 U	53	18	14	11	78	28	9.4	7.9
trans-1,3-Dichloropropene	10061-02-6		15 U	15 U	1.4 U	15 U	15 U	14 U	0.68 U	0.85 U		1.4 U	2.7 U	1.4 U	0.34 U		0.68 U	1.4 U	
1,1,2-Trichloroethane	79-00-5	5.8E+00	17 U	17 U	0.28 U	17 U	17 U	2.8 U	0.14 U			0.28 U		0.28 U	0.069 U			0.28 U	
Tetrachloroethene	127-18-4	1.5E+01	22 U	22 U	0.66 U	22 U	22 U	6.6 U	0.33 U				190	86	2.8	1.7 U		19	19
2-Hexanone	591-78-6		66 U	66 U	0.4 U	66 U	66 U	4 U	0.2 U					0.4 U	0.1 U			13	0.4 U
Dibromochloromethane	124-48-1		27 U	27 U	0.65 U		27 U	6.5 U							0.16 U			0.65 U	
1,2-Dibromoethane	106-93-4	1.6E-01	25 U	25 U	0.89 U	25 U	25 U	8.9 U	0.44 U					0.89 U	0.22 U		0.44 U	0.89 U	0.89 U
Chlorobenzene	108-90-7	1.7E+03	15 U	15 U	0.48 U		15 U	4.8 U	0.24 U			0.48 U	0.95 U	0.48 U	0.12 U			0.48 U	0.48 U
Ethylbenzene	100-41-4	3.7E+01	14 U	14 U	0.57 U		14 U	100	0.28 U		14 U	8.7	1.1 U		2	1.4 U		0.57 U	0.57 U
m,p-Xylenes	179601-23-1	3.5E+03	2 U	2 U	0.77 U		2 U	200	7.3	20	2 U	21	1.5 U	39	6.2	1.9 U	7.3	0.77 U	
o-Xylene	95-47-6	3.5E+03	14 U	14 U	0.4 U		14 U	94	0.2 U		14 U	8.4	0.81 U	27	2.9	1 U		0.4 U	
Styrene	100-42-5	3.1E+04	14 U	14 U	0.62 U		14 U	6.2 U	0.2 U			0.62 U			0.15 U			0.62 U	
Bromoform	75-25-2	8.5E+01	33 U	33 U	1.3 U		33 U												
	.0202		00 0	00 0	1.0 0	00 0	00.0		0.00 0	0.00 0		1.0 0	2.0 0	1.0 0	0.00 0	0.0 0	0.00 0	1.0 0	1.0 0

Table 1

Summary of Sears Closure Soil Vapor Data Soil Vapor Investigation Report Former Vallco Mall, Cupertino, California

		0 amm la 10 ^[3]	01/4 5	01/4/40	01/4/40	01/ 4.00	01/ 0.4	01/0.44	01/ 0.00	01/ 0.20	0)/ 0 4	01/ 0 40	01/ 0.04	01/ 0.00	01/45	SV 4 40	01/ 4.00	01/ 4 20	01/ 4 200
[1][2]		Sample ID [3]	SV-1-5	SV-1-13	SV-1-19	SV-1-30	SV-2-4	SV-2-14	SV-2-20	SV-2-30	SV-3-4	SV-3-12	SV-3-21	SV-3-30	SV-4-5	SV-4-12	SV-4-20	3.	SV-4-300
	CAS No.	ESLs ^[4]	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m°)	(µg/m³)	(µg/mš)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/mš)	(µg/mš)	(µg/m³)	(µg/m³)	(µg/mš)	(µg/m³)
1,1,2,2-Tetrachloroethane	79-34-5	1.6E+00	22 U	22 U	0.35 U	22 U	22 U	3.5 U	0.18 U	0.22 U	22 U	0.35 U	0.71 U	0.35 U	0.088 U	0.88 U	0.18 U	0.35 U	0.35 U
4-Ethyltoluene	622-96-8		16 U	16 U	0.23 U	16 U	16 U	2.3 U	0.12 U	0.14 U	16 U	0.23 U	0.46 U	11	0.058 U	0.58 U	0.12 U	0.23 U	0.23 U
1,3,5-Trimethylbenzene	108-67-8		16 U	16 U	0.35 U	16 U	16 U	3.5 U	0.18 U	0.22 U	16 U	0.35 U	0.7 U	34	0.088 U	0.88 U	0.18 U	0.35 U	0.35 U
1,2,4-Trimethylbenzene	95-63-6		16 U	16 U	0.38 U	16 U	16 U	3.8 U	0.19 U	0.24 U	16 U	9.1	0.76 U	47	4.2	0.95 U	0.19 U	0.38 U	0.38 U
1,3-Dichlorobenzene	541-73-1		19 U	19 U	0.64 U	19 U	19 U	6.4 U	0.32 U	0.4 U	19 U	0.64 U	1.3 U	0.64 U	0.16 U	1.6 U	0.32 U	0.64 U	0.64 U
1,4-Dichlorobenzene	106-46-7	8.5E+00	19 U	19 U	0.53 U	19 U	19 U	5.3 U	0.27 U	0.33 U	19 U	0.53 U	1.1 U	0.53 U	0.13 U	1.3 U	0.27 U	0.53 U	0.53 U
Benzyl chloride	100-44-7		17 U	17 U	0.34 U	17 U	17 U	3.4 U	0.17 U	0.21 U	17 U	0.34 U	0.69 U	0.34 U	0.086 U	0.86 U	0.17 U	0.34 U	0.34 U
1,2-Dichlorobenzene	95-50-1	7.0E+03	19 U	19 U	0.37 U	19 U	19 U	3.7 U	0.19 U	0.23 U	19 U	0.37 U	0.74 U	0.37 U	0.093 U	0.93 U	0.19 U	0.37 U	0.37 U
1,2,4-Trichlorobenzene	120-82-1	7.0E+01	24 U	24 U	2 U	24 U	24 U	20 U	1 U	1.3 U	24 U	2 U	4 U	2 U	0.5 U	5 U	1 U	2 U	2 U
Hexachlorobutadiene	87-68-3	4.3E+00	34 U	34 U	1.6 U	34 U	34 U	16 U	0.79 U	0.99 U	34 U	1.6 U	3.2 U	1.6 U	0.4 U	4 U	0.79 U	1.6 U	1.6 U
Naphthalene	91-20-3	2.8E+00	420 U	420 U	0.61 U	420 U	420 U	6.1 U	0.3 U	0.38 U	420 U	0.61 U	1.2 U	0.61 U	0.15 U	1.5 U	0.3 U	0.61 U	0.61 U
Helium	7440-59-7		1.3	3.8	0.2 U	0.2 U	2.4	5.5	0.2 U	0.2 U	0.6	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3	0.2 U

Notes:

[1] Bold results indicate the concentration is greater than the laboratory reporting limit; results highlighted yellow indicate exceedance of screening levels.

[2] Results highlighted salmon indicate the method detection limit exceeded screening levels.

[3] Samples collected by WSP on 11/20/20 & 11/23/20. Sample nomenclature is as follows: "soil vapor-sample location-sample depth".

[4] Environmental Screening Levels (ESLs) in µg/m³ for direct exposure to human health for residential shallow soil exposure as established by the San Francisco Bay Regional Water Control Board, revised July 2019.

Abbreviations and Acronyms:

 $\mu g/m^3 = \overline{\text{micrograms per cubic meters}}$

U = compound was not detected at a concentration greater than the method detection limit (MDL) shown

-- = not applicable or not available

SOIL VAPOR MONITORING LOG - VALLCO, CUPERTINO, CALIFORNIA

ate:	11/22/20	Sampled by:	<u>Bailey Sam</u>			Signature	
eather:	Sunny	Subcontractor:				Signature	
SOIL VAPO	OR SAMPLE ID:		SV-1-5	SV-1-13	SV-1-19	SV-1-30	CRITERIA
WELL PUR	GE WITH PUMP						
		Well purge start time :	= 1508	1418	1357	1323	
	Purge pum	p flow setting (ml/min)	200	200	200	200	>100 ml/min
	Purg	e volume required (ml) :	= 1047	1181	1281	1465	See purge volume calcs
	Time required to remove	3 purge volumes (min) =	= 5	6	6.5	7	Vol required / flow
		Well purge end time	= 1513	1424	1406	1330	
		Total volume purged :	= 1047	1181	1281	1465	
SYSTEM SE	TUP						
	Enter sample can n	nanifold number on COC	A10069	A10033	A10034	A10070	
	Enter sample	e can SN number on COC	447	439	423	442	
PURGE SH	ROUD WITH HELIUM						
	Helium conc	entration in shroud (%) =	= 30.1	24.6	27.3	30	> 20% Helium
	(Record every 2 m	ninutes during sampling) 22.3	27.5	22.3	30	
	(Record every 2 m	ninutes during sampling) 24.5	23.4	24.5	25	
	(Record every 2 m	ninutes during sampling)		20.0	30	
	(Record every 2 m	ninutes during sampling)				
	(Record every 2 m	ninutes during sampling)				
	(Record every 2 m	ninutes during sampling)				
SHUT-IN TE	EST AND BOREHOLE SEA	L LEAK CHECK					
	М	anifold Gauge Pressure =	- 29	29	27	30	
Boi	rehole seal leak check: He	lium concentration (%) :	-0.07	-1.5	-3.5	-3.1	<1% Helium
		COLLECT SAMPLE					
Rec	cord start time and initial	canister vacuum on COC	2 1514/29	1424/29	1406/27	1340/30	
R	ecord end time and final	canister vacuum on COC	1546/11	1500/11	1412/5	1347/5	Vacuum of 5 inch Hg or less in sample canister

NSD

NOTES :

Collect duplicate sample at monitoring point SV-4. Duplicate sample ID = SV-4-300.

SV-1-30 - hissing noise when purging at the purge can connection, sound dissipates after a purging for a while - ambient air prior to puring, helium level at 1.7

SV-1-19 - SAA

- SV-1-13 @ 1435 psi was at 11, @1500 psi remianed at 11 and sample was collected
- SV-1-5 @ 1523 psi was at 11, @1546 psi remianed at 11 and sample was collected

SOIL VAPOR MONITORING LOG - VALLCO, CUPERTINO, CALIFORNIA

Date: <u>11/23/20</u>	Sampled by:	Bailey Sam			Signature:	
Weather: Sun	ny Subcontractor:				Signature:	
SOIL VAPOR SAMPLE I	D:	SV-2-4	SV-2-14	SV-2-20	SV-2-30	CRITERIA
WELL PURGE WITH PUM	P				· ·	
	Well purge start time =	0936	0858	0840	1503	
	Purge pump flow setting (ml/min) =	200	200	200	200	>100 ml/min
	Purge volume required (ml) =	1030	1197	1298	1465	See purge volume calcs
Time required	to remove 3 purge volumes (min) =	5	6	6.5	7	Vol required / flow
	Well purge end time =	0941	0904	0846	1509	
	Total volume purged =	1030	1197	1298	1465	
SYSTEM SETUP						
Enter sa	mple can manifold number on COC	A10063	A10031	A10022	A10073	
Er	iter sample can SN number on COC	247	438	C10441	435	
PURGE SHROUD WITH H	ELIUM					
Н	elium concentration in shroud (%) =	23.7	23.7	22.4	44.0	> 20% Helium
(Recor	d every 2 minutes during sampling)	25.0	28.2	24.6	36.0	
(Recor	d every 2 minutes during sampling)	21.1	22.3	22.5	25.6	
(Recor	d every 2 minutes during sampling)	20.5	20.9	22.9	21.4	
(Recor	d every 2 minutes during sampling)				20.5	
(Recor	d every 2 minutes during sampling)					
(Recor	d every 2 minutes during sampling)					
SHUT-IN TEST AND BORE	HOLE SEAL LEAK CHECK					
	Manifold Gauge Pressure =	29	29	29	30	
Borehole seal leal	<pre>c check: Helium concentration (%) =</pre>	0.02	-1.9	-2.3	-1.9	<1% Helium
	COLLECT SAMPLE					
Record start time	and initial canister vacuum on COC	0943/29	0905/29	0847/29	1610/29	
Record end tim	e and final canister vacuum on COC	0950/5	0935/5	0855/5	1618/5	Vacuum of 5 inch Hg or less in sample canister

\\SD

	1	1	1	

NOTES :

Collect duplicate sample at monitoring point SV-4. Duplicate sample ID = SV-4-300.

SOIL VAPOR MONITORING LOG - VALLCO, CUPERTINO, CALIFORNIA

Date: <u>1</u>	1/23/20	Sampled by:	Bailey Sam			Signature:	
Weather:	Cloudy	Subcontractor:				Signature:	
SOIL VAPOR	SAMPLE ID:		SV-3-4	SV-3-12	SV-3-21	SV-3-30	CRITERIA
WELL PURGE	WITH PUMP					· · · ·	
	We	ll purge start time =	1225	1042	1025	1005	
	Purge pump flo	w setting (ml/min) =	200	200	200	200	>100 ml/min
	Purge vol	ume required (ml) =	1030	1164	1314	1465	See purge volume calcs
Tin	ne required to remove 3 pu	rge volumes (min) =	5	5.8	6.5	7	Vol required / flow
	W	ell purge end time =	1230	1048	1031	1012	
	To	tal volume purged =	1030	1164	1314	1465	
SYSTEM SETU	P						
	Enter sample can manif	old number on COC	AI0064	AI0035	Al0042	AI0072	
	Enter sample can	SN number on COC	443	421	440	409	
PURGE SHROU	JD WITH HELIUM						
	Helium concentra	ition in shroud (%) =	30.2	22.0	23.9	33.8	> 20% Helium
	(Record every 2 minut	es during sampling)	23.9	25.7	21.5	30.5	
	(Record every 2 minut	es during sampling)	22.3	28.2	21.4	30.0	
	(Record every 2 minut	es during sampling)	25.0	24.2	23.3	26.9	
	(Record every 2 minut	es during sampling)				21.7	
	(Record every 2 minut	es during sampling)					
	(Record every 2 minut	es during sampling)					
SHUT-IN TEST	AND BOREHOLE SEAL LEA	AK CHECK		•			•
	Manifo	ld Gauge Pressure =	28	28	27	29	
Boreho	ole seal leak check: Helium	concentration (%) =	-2.5	-0.05	-1.9	-2.6	<1% Helium
		COLLECT SAMPLE					
Record	I start time and initial canis	ter vacuum on COC	1236/28	1042/28	1033/27	1013/29	
Reco	rd end time and final canis	ter vacuum on COC	1242/5	1056/5	1030/5	1021/5	Vacuum of 5 inch Hg or less in sample canister

\\SD

	1	1	1	

NOTES :

Collect duplicate sample at monitoring point SV-4. Duplicate sample ID = SV-4-300.

SOIL VAPOR MONITORING LOG - VALLCO, CUPERTINO, CALIFORNIA

ate:	11/23/20	Bailey Sam Signature:								
leather:	Cloudy	Subcontractor:				Signat	ure:			
SOIL VAPO	OR SAMPLE ID:		SV-4-5	SV-4-12	SV-4-20	SV-4-30	SV-4-300	CRITERIA		
WELL PUR	GE WITH PUMP									
	W	ell purge start time =	1417	1358	1339	1258	1258			
	Purge pump flo	ow setting (ml/min) =	200	200	200	200	200	>100 ml/min		
	Purge vo	lume required (ml) =	1047	1164	1298	1465	1465	See purge volume calcs		
	Time required to remove 3 pu	urge volumes (min) =	5	5.8	6.5	7	7	Vol required / flow		
	N	/ell purge end time =	1422	1404	1346	1305	1305			
	To	otal volume purged =	1047	1164	1298	1465	1465			
SYSTEM SE	TUP			•		•		•		
	Enter sample can mani	fold number on COC	AI0071	AI0021	AI0039	AI0057	AI0057			
	Enter sample car	SN number on COC	148	153	195	444	155			
PURGE SHI	ROUD WITH HELIUM			•		•		•		
	Helium concentr	ation in shroud (%) =	30.2	25.1	25.0	41.5	41.5	> 20% Helium		
	(Record every 2 minu	tes during sampling)	27.6	23.1	27.9	31.4	31.4			
	(Record every 2 minu	tes during sampling)	26.1	23.3	29.9	26.9	26.9			
	(Record every 2 minu	tes during sampling)	25.4	22.7	28.1	25.4	25.4			
	(Record every 2 minu	tes during sampling)			24.1	20.2	20.2			
	(Record every 2 minu	tes during sampling)								
	(Record every 2 minu	tes during sampling)								
SHUT-IN TE	EST AND BOREHOLE SEAL LE	AK CHECK			•					
	Manif	old Gauge Pressure =	29	29	29	29	29			
Boi	rehole seal leak check: Helium	n concentration (%) =	-0.07	-0.09	-2.6	-1.3	-1.3	<1% Helium		
		COLLECT SAMPLE								
Rec	cord start time and initial cani	ster vacuum on COC	1424/29	1405/29	1347/29	1306/29	1306/29			
R	ecord end time and final cani	ster vacuum on COC	1435/5	1414/5	1354/5	1327/5	1327/5	Vacuum of 5 inch Hg or less in sample canister		
Well Inspe	ction Obervations							·		

\\SD

	1	1	1	

NOTES :

Collect duplicate sample at monitoring point SV-4. Duplicate sample ID = SV-4-300.

2	2025 Gat	ORING WSP U teway Pl Jose, C			Location		N Woli	allco Mall Te Rd. Cupertino	Boring No. <u>DV - 1</u> Sheet 1 of 2 Date(s) Drilled 11/19/20 Logged By: <u>Elena Robertson</u>					
Drilling C Driller:	Co.: Trir Henry	ity Drill , JLFF	ling 			5,18	oor Probo 3,19 ck interv	,30		First Encountered Groundwater ∇ : N/A Depth to Water in Boring Ψ : Depth to Water in Well:				
Drilling N Hole Diat Hole Dep Backfill n	neter: 2 th: 31 nethod:	.5"	Push			Sand pack intervals: 15-515 21:5-30:5 12:5-13:5 # 3 sund Seal intervals: 5:5-6:7-dry bent content Seal types: Bent, Gumples # 8								
Sample Id/ Time	Sampler Type		Blows/6"	Recovery (ft/ft)	Sample Interval		USCS	Graphic Log	ndes r a	Soil Description				
				4.515	1	0	CL.		1040F-cgra	d. plast. fines, 20% F r sundi vel. hurd, moist				
11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						-2-	cr		med. plast . fin	(LAY (CL), dark brown (10/R413 US, 10% f-m sand, hard, moist				
3 <) \os	2 5 1					4-			gray horn	BI.4 Color change to vidare 3/1), no order				
probe 1	27			3,213	Â	-5-			es' saa Q 4 top trut n	12', nute -0.5' of slough at 105 wet (sandy clay material)				
			2			-7- - 8 -			28' 54A Q	1, 4 '				
				212		9			CID'SAA CI	4 · somedissiminated called				
				-1/1 4/3	Â	10			CI2.7'SAND broinn (IUYR4	YLEAN CLAYCEL, durk yellowist 114), Med. Plast. Fires, 35% F-C				
proise	@13)				-12-	er		Sund, Firm,					
				3.5/2		14-			CIS' SAAC	Y STIT (ML), nellowish				
		1		3.213	× ↑	15	ML		40% F-m	sand, firm, moist				
						17	61W							

	2025 Ga	ORING WSP U teway Pl Jose, C	JSA lace, Sui		Loc	ation:		i Wolfe	allco Mall e Rd. Cupertino	Boring No. <u>SV-</u> Sheet 2 of Z Date(s) Drilled 11/19/20 Logged By: <u>Elena Robertson</u>
Sample Id/ Time	Sampler Type	PID/FID (ppm)	Blows/6"	Recovery (ft/ft)	Sample Interval	Depth (ft)	USCS Symbol	Graphic Log		Soil Description
					1	17 -18-	GW		CI7.Z' WE SAND (GW	LL GRADED GRAVEL W/), brownish yellow
probe e	19'			1.812		-19-			(1048616) Sand, tra (218' SAA), brownish yellow F-c gravel, 30% f-c ce fines C(7.2', 40% of -c sand
				2.313	X	-20	ML		CZU' SAA 6	@15' 30% +-msnnd, 20.8-21.3
						-21- -22-	ce		C21.3' SAN Yellowish	NDY LEAN CLAY (LU), dury. brown (1012416), med. prast.
				4.2/3	Ň	-23				"90 f-1 sund, haid, moist. 3 21.3', 30% t-1 sund
						-24				
						-25- -26-	•	, *	C24' 8 44	1 @ 23', 5-10% f. cgravel
				2.5/2		_27_			2017-2012-01-01-01-01-01-01-01-01-01-01-01-01-01-	LLGRADED SAND W/ SW), pale brown (104R (e(3),
					V A	28	in the		f-c sand Rines, mu	1, 20% f-c gravel, trace
probe	<u>e</u> 30)				-29-		~		
1.00-						-30-	A		RORO	2.11
						-32-			BOBC	21
						-33-				
						-34- -35-				134.
			-			-36-	1		,	
						-37- 38				6. - 1

Drilling Co.: Trinity Drill	A 95110		Project #			fe Rd. Cupertino	Boring No. <u>SV-2</u> Sheet 1 of Date(s) Drilled 11/19/20 Logged By: <u>Elena Robertson</u>	
Driller:	ling		Soil Vap	oor Prob	e Depth	s:	First Encountered Groundwater ⊽: Depth to Water in Boring ▼: Depth to Water in Well:	
Borin Drilling Method: Hole Diameter: Hole Depth: Backfill method:	<u>19</u>		Sand pao	rvais:	als:	c A	Soil Sampling Method(s): Sampler Length: Sampler Diameter:	
Sample Id/ Time Sampler Type PID/FID (ppm)	Blows/6" Recovery (ft/ft)	Sample	Seal types: Depth (ff) USCS Symbol		Graphic Log	C	Soil Description	
Pra Delle 141	5/5 2.7/5 2.7/5 2.4/2 3.7/3 3.7/3 3.7/3		-11- -12- -13-	CL CL CL CL CL		farkyellowi f-c Shrid black colo C5' LEAI brown 110 Mid. plast. 08' LEAN plawn 10 Mid. plast. 08' LEAN gellowish br Sand, 5% C9' SAA gragish br Sand C1' seem C13' SAA gellowish br Sund, med C17.5' CL yellowish	N CLAY & GRAVEL (LL), Conish Drown (IDYR 4/16), fines, 15% f-c sand, gravel, dry, hard (LAY WISAND (LL), sh brown (INIR4/14), 15%, trace f. gravel, dry, hard, r e f-4.2, no odor. V CLAY (LL), dww yellowish YR 314), 5% f-c sand, fines, Moist, hurd AY WISAND (LL), derk NWA (IOYR 314), 15% f-c F. gravel, meist, hurd e 5' moHled w/y, durk wan (IOYR 312), 10% f-c Sund lense w/gravel vel lense s of f-m sand 8', IDY LEAN CLAY (LL), what INDIR 5/6), 45% f-c I. plast. fines, moist, havd AYEY SAND (SC), durk brown (IOYR 4/4), f-c 'o med plast. fines, moist	

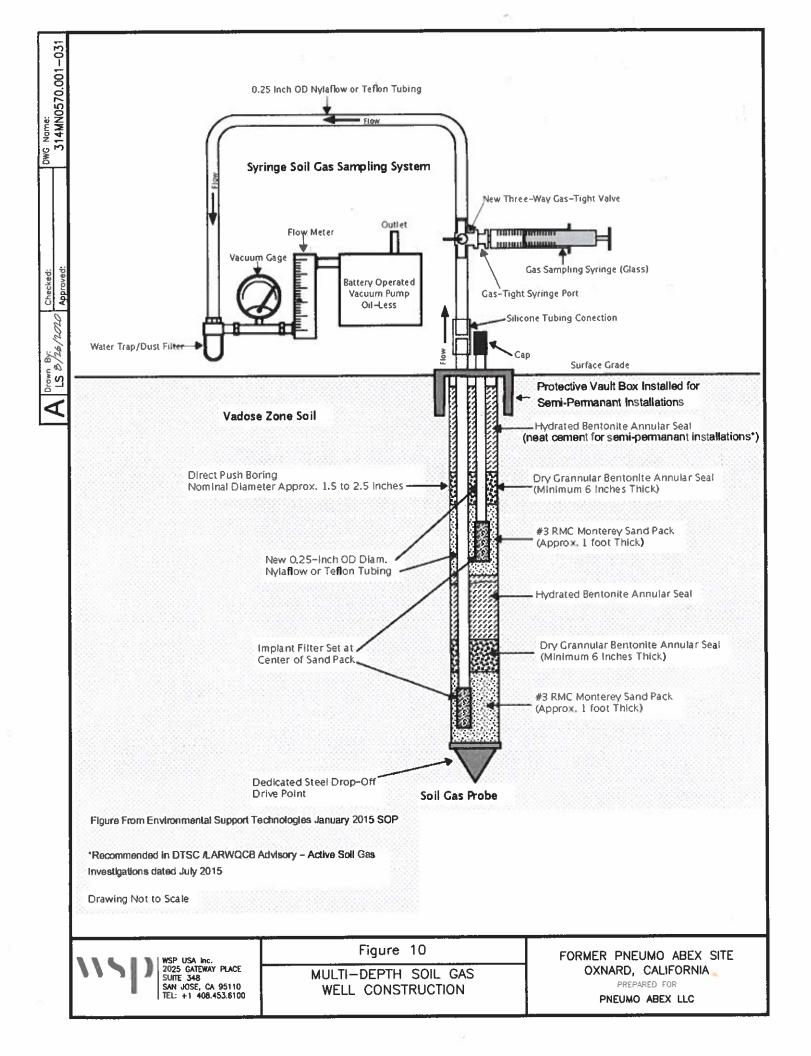
÷

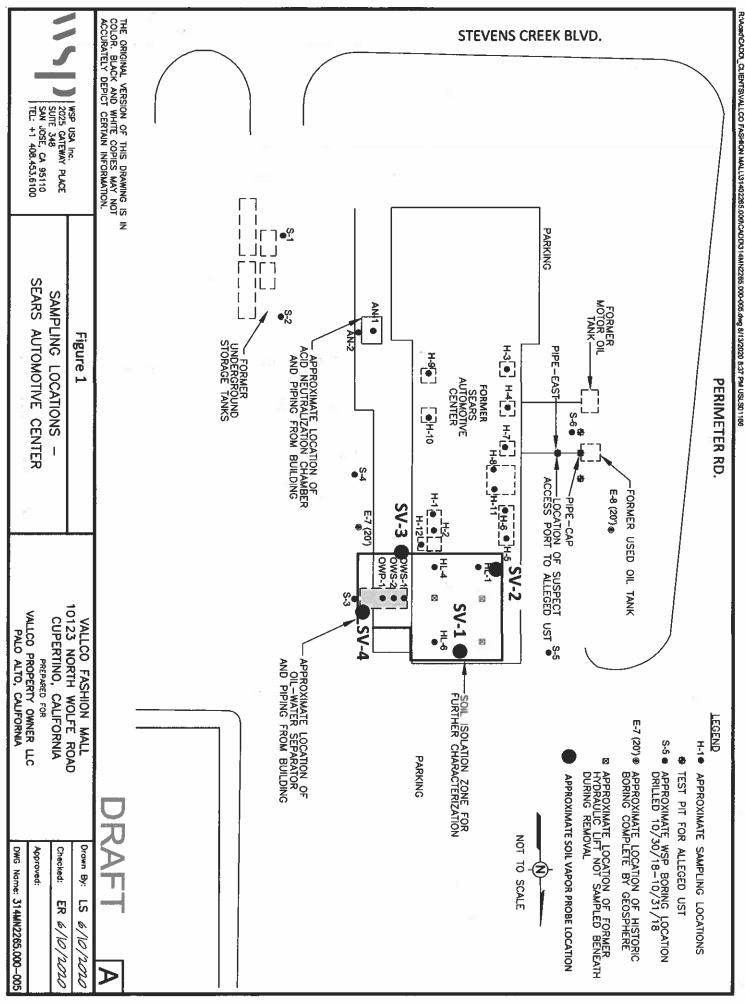
2	2025 Ga	LOG JSA ace, Sui A 95110		Loc	ation:		l Wolf	allco Mall e Rd. Cupertino	Boring No. 5V-2 Sheet 2 of Date(s) Drilled 11/19/20 Logged By: <u>Elena Robertson</u>	
Sample Id/ Time	Sampler Type	PID/FID (ppm)	Blows/6"	Recovery (ft/ft)	Sample Interval	Depth (ft)	USCS Symbol	Graphic Log		Soil Description
					1	17	36		CIS' SAA.	15% med plast fines
						-18	1		C19,5' tra	insition to POORLY
				212	$\mathbf{\dot{\wedge}}$	-10-			GRADED	SAND (SP), brewnish
						-1 9 -			yellow (10	<u>\$P 6/6), f-c sand,</u> 28, Muist
		3					-		trace Fin	is, moist
Prope	@ 20		•	A 44 A	V	-20	SP		@ 20' 3A	
				2.813			30			10YR414, Md. plast.,
			-			21-	ML		Trace F.S.	and, suft, wet
									10011 18AS	N CLAY WI SAND((C), durn
						-22	CL		uellowish	b(payn (108 2416), med.
						-23			plart. Fines	brown (1082416), med.
				3.2/2	Ň				moist	
						-24				
									026.8' =	5AA @ 22', 5% f-c
	n de la companya de					-25-			grave 1	
				4614	$ \uparrow\rangle$		-		82231 ()	Ad GV IN ANGL WILLSAME (COL)
				4513		-26			INYR YIN	ALEY GRAVEL WI SAND (OC),
									A-Carau	20% mid. plast fines, ul, 25% f-c Sand, moist
			-12/201101			-27-	CL GL		, give	and solution and the provider
			-			-28	uc .		C 28.5' W	VELL GRADED GRAVEL W
				2.4/3	1				5AND CH	W), 25% F-2 sand Nel, moist
						29	เงเพ		F-cgray	rel, moist
prope	230'					-30				
			1994.9						ROB	031'
						-31-			- 0015	0.01
					<u> </u>	~~				
						-32-		9,		
						-33-	1	100		
						-55-				
						-35-				
						-36	2	Į		
					$\left \right $					
						-37-			,	
				-						

Drilling Co.: Tri Drilling Co.: Tri Driller: Herry Drilling Method: Hole Diameter: Hole Depth: 31 Backfill method:	0	 	Project # Soil Vap 4_{1} (" Sand par 5-4.5 zeal inst 1.5-4 1.5-4	n: 10123 #: 31402 por Prob Z, Z I ck interv ; 11.5-1 - 30.5 ervals:	N Wolf 265.001 265.001 265.001 30	s: 2015-21.5, 5 and .5 -hydratubent	Boring No. $5\sqrt{-3}$ Sheet 1 of 2 Date(s) Drilled 11/19/20 Logged By: <u>Elena Robertson</u> First Encountered Groundwater ∇ : Depth to Water in Boring \mathbf{V} : Depth to Water in Well: <u>Soil Sampling</u> Method(s): <u>Continuous</u> corres Sampler Length: <u>5'</u> Sampler Diameter: 2.5''				
	Sample Id/ Time Sampler Type PID/FID (ppm) (ppm) (ppm) (ft/ft) Sampler						Graphic Log	Soil Description			
Prope e 12'			5 5 3.4/3 1.9/2 2.1/3 2.8/3		$\begin{array}{c} 0 \\ -1- \\ -2- \\ -3- \\ -3- \\ -4- \\ -5- \\ -5- \\ -6- \\ -7- \\ -8- \\ -9- \\ -10- \\ -11- \\ -12- \\ -11- \\ -12- \\ -13- \\ -14- \\ -15- \\ -16- \\ 17 \end{array}$	CL CL CL ML		grayish bi gravel, 2 mud. plas CO, 8' LEAI bring (107 10% F-C hard, mo CS' LEAN bring (10% CS' LEAN bring (10% CS' LEAN plust. fm maist CII.5' STLT pronn (10% 25% f-C 3 CIS' SAA CIG.7' M	CLAY (CL), durk yellowish 4/4), mid. plast. Fires, nd. trace f-c gravel, hurd, (LAY W) SAND (CL), med. (LAY W) SAND (ML), yellowish (LOY SAND (LAY STIT (LIY CARADED SAND V/ STIT (LIY CAR		

	2025 Ga	5 LOG JSA ace, Sui A 9511(Loc	ation:	10123 N	l Wolf	allco Mall e Rd. Cupertino	Boring No Sheet 2 of Z Date(s) Drilled 11/19/20 Logged By: Elena Robertson	
e Id	e er	<u> </u>	.9/	ery			3140226 s 5			Soil Description
Sample Id/ Time	Sampler Type	PID/FIC (ppm)	Blows/6"	Recovery (ft/ft)	Sample Interval	Depth (ft)	USCS Symbol	Graphic Log		
						17	SW-SM	1	CIB' POORL	K GRADED SAND WI SI VT
				1.712	Ť	-18-	SP-SM		f-(sand,	brewnish yellow LIUTR 6181, 10% (p fines, moist T(ML), yellowish brown (10YRS/8 10% 1p fines, dry, hard
						-1 9 -	m		EIAII'SIL	T(ML), yellowish brown (10YRS/8
						-20			CLU'SAN	DY SILT (ML), brownish
probe	2211			4.515	$ \uparrow$		ML		yellow (10)	VR. 614), 10W plast. Fines,
proce						-21	ML		@21 SAA	sand, moist, soft 220°, 50% f-c. sand, hard
						-22-			@23' 5430T	LEANCLAY WISAND(CL), wish brown love 446),
a.						-23	CL		med plas	1. fines, 25% F-c sand,
	-								CIS' LEAN	any cur, yellowish
						-24-			brive (10)	R514), med plast. Arus,
				3.413		-25-	ĩ.			NDY LEAN LLAY WI URAVEN
						-26			CLL), durie	yellowish brown MOYRY/4),
						-27-	a.		10% trigr	fires, 20% of - c sand, avel, hard, moist
						-21-			228 WELL	GRADED SAND WI GRAVEL
				2.313	No.	-28	Sin	•	f-coand	, 20% f- c gravel, trace
						-2 9 -			fines, m	pist-
provec	30'					-30				
	- Andrew					-50-			BUBE	2,1
						-31			LUIS @;	57
						-32-				
	145					-33-				
1						-34				
						-35-				
						-36				
				¢		-37-				
						38				

								\$					
	G LOG JSA lace, Su CA 9511			Location		N Wol	Vallco Mall fe Rd. Cupertino	Boring No. Date(s) Drilled 11/19/20 Logged By: <u>Elena Robertson</u>					
Drilling Driller:	ling FF			Soil Vaj 5, IZ	por Prob , 20 ,	e Depth 30		First Encountered Groundwater ∇: N/A Depth to Water in Boring ♥: Depth to Water in Well:					
Boring Drilling Method: direct push Hole Diameter: 2.5" Hole Depth: 31 Backfill method: Construct SV propes						Seal into 5.5-12	s nydri es 1015-	5-20.5 15-30 5 1. 100 bit		Soil Sampling Method(s): (c Sampler Length: 5' Sampler Diameter: 2''			
Sample Id/ Time							USCS Symbol	Soil Description					
	1			4.815	1	0	er		LEAN CLAY	WISAND (CL), yellowish brown			
	-			1	+	-1-			(104R514), 19 hard, moist.	18514), 15% f-csund, 5-10°10 F C gravel,			
							1		C3' STLT	(ML), day hyellowish brown ned plast. Fines, 10%			
					++				aurry , r	ned plast fines, 10%			
						m		05.5' LEAN	d, hava, moist I CLAY CCLI, durin yeilowish				
******					$\left \right $	4			brown (wyr	2314), mud. plast. fines,			
probe	05'				H	5	-		570t-m san present	d, hard, moist, discriminated ratiches			
1.000				2.513	1								
	-	-			$\left\{ + \right\}$	6	cu	es' SAA @ 5.5'		5 4 1			
					$\uparrow\uparrow$	7_	1		ev onn e				
	*				\downarrow	, í	-		Antonia				
				1,572		4 -8-			ILVR5167	NDY SELT (ML), Yellowish brown (6), Med. plast fines, 35% from hard moist			
**************************************						9			Sand , hard	1 mois 1			
					$\left \right $	_	-						
····				415					CIU' SAA C	2 12°, 45% of -m sand,			
					Π.	-11-			SOFE	· · · · · · · · · · · · · · · · · · ·			
probe	a 12	1			$\left\{ \right\}$	_							
Proble						12	ML						
			_	-		-13-							
- iminio					┼┼	14	-			~			
	*												
				4,215	\ \ \ \ \ \	-15-							
				142									
						_	ML						
						17							


2	2025 Ga	WSP U teway Pl Jose, C	JSA lace, Sui		Loc	ation:		l Wolfi	allco Mall e Rd. Cupertino	Boring No. <u>BV-4</u> Sheet 2 of Date(s) Drilled 11/19/20 Logged By: <u>Elena Robertson</u>				
Sample Id/ Time	Sampler Type	PID/FID (ppm)	Blows/6"	Recovery (ft/ft)	Sample Interval	Depth (ft)	USCS Symbol	Graphic Log	Soil Description					
			-			17 -18- -19-	5W ML		(17' WELL GRADED SAND W/ GRAVELLOW yellowish brown (10YR 5/6), f-c sun 20% f-c gravel, trace fines, muist C18.5 STLT (MC), brownish yellow					
prone C	.20'			4,815	X	20 21	5M HL		(10YR 6/6), med plust. Anes, 10% F. m.s. hard, moist @20' SAND SJLTY SAND (SN), gellow brown 110/R 516), f-c Sand, 30% 10 Find moist					
						-22- -23- -24-	CL		021' STLT W/ SAND (ML), durn yellowi brown liviz 4/6), Med. plast. fines, 25% f-1 sand. hard, moist 022.5' LEAN CLAY (CL), yellowish brown (101R 3/16), med. plast, 10%f.					
				3,713	×	-25- -26-			chun yellowis Fines, 209/21 Moist	sition to SANDY LEAN (LAY CLL), the brown (10/24/4), med. plast. F-c Sund, 15% f-c grave 1. hard,				
				2.4/5	><	-27- -28- -29-	CL SW		ORAVELL	L CARADED SAND W/ SW), pale brown (10/R.4(3), 2090 F-c gravel, trace ist				
probe (230'					-30- -31			BOB C	31'				
	1	·		and the second se		-32- -33-		5 1		1				
ar Ar						-34- -35-								
						-36- -37- 38								


Soil vapor probe wells are built w/ stainless steel filters and are constructed in tremmie pipe.

Tubing = nylaflow tubing Drillers use one tremnlie pipe to set probe and sand pack + dry bent layer then uses seperate tremmie line to do the hydracted bent. lifts. Review w/ AJW -nydrated bentonite ok botween probes -Probes @ 5, 10, 20, 30 -HL-4 had VOCS (detectable levels) Two hours prior to probe install call 408-630-2660 SV-2 is 4' East of HL-1N5 SV-3 is 21' South of OSNS-155 SV-4 is 10.5' North 93' east of OWP-IN5

OV-1 is 4.5' North 3 7' west of HL-6NS

Note to Bailey SV-1-5 was set in a clay-may not be able to draw a sample. In general the shallowest probe was set in a gravery clay.

18/2411 OD EASUBON MALI 1/31400/365 0000 0 ADDW314446/3255 000 005 4-10 8/332000 9-37 0441/81 001165