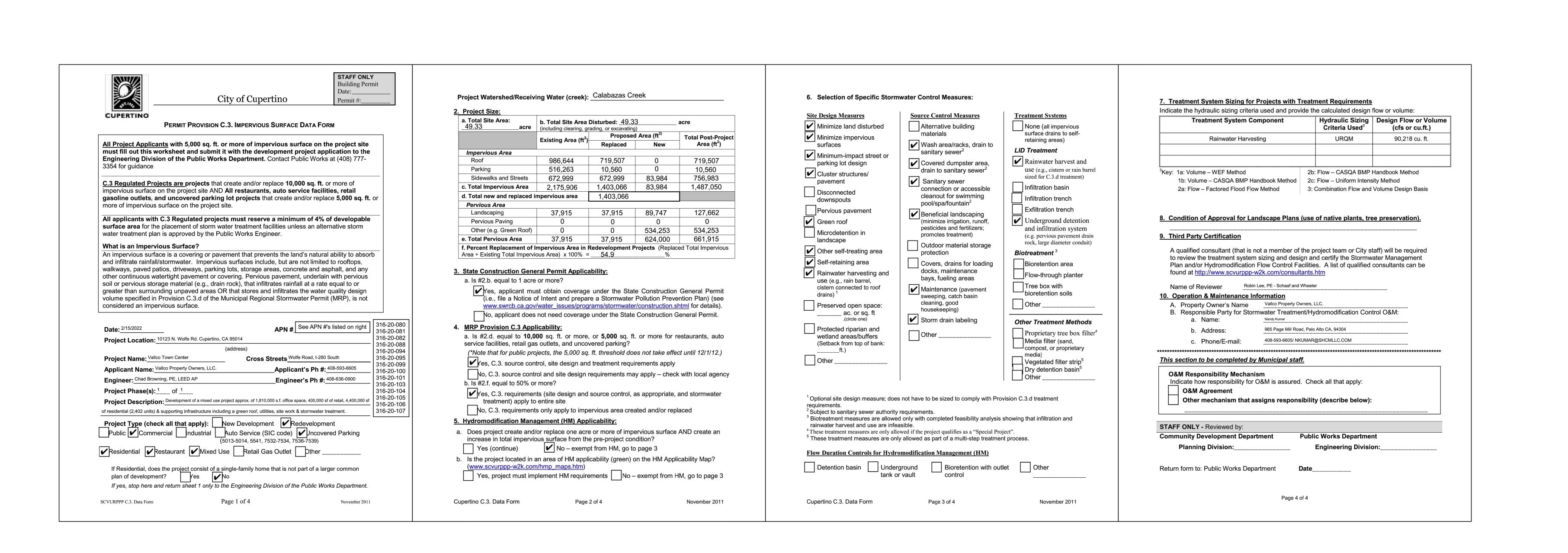

CISTERN SIZING CALCULATIONS BY DRAINAGE AREAS:

Drainac	e A	rea 1 (DA-1) Volu	ume Base	d Treatment	Measures		Draina	qe A	rea 2 (DA-2) Vol	ume Based	rreatment	Measures	
using th	e UF	RQM Approach					using th	ne Ul	RQM Approach				
Step 1.		Drainage Area fo	or BMP:	17.28	acres		Step 1.		Drainage Area fo	or BMP:	32.05	acres	
							,						
Step 2.		Impervious Area:			acres		Step 2.		Impervious Area			acres	
	b.	Impervious ratio:	(i)	61.4%				b.	Impervious ratio:	(i)	64.4%		
Step 3.		Watershed rur	noff Coeffi	cient Cw =	0.419		Step 3.		Watershed rur	noff Coeffici	ent Cw =	0.444	
		$(Cw = 0.858i^3 - 0.7)$	78i ² +0.774	li+0.04)					$(Cw = 0.858i^3 - 0.7)$	78i ² +0.774i+	+0.04)		
Step 4.		Mean Annual Pre	ecipitation	16	inches		Step 4.		Mean Annual Pre	ecipitation	16	inches	
•													
Step 5.		Closest Rain Gage San		Jose Airport Ste		Step 5.		Closest Rain Gage San Jose		ose Airport			
		Gage	MAP _{gage}	(P ₆) _{gag}	e (in)				Gage	MAPgage	$(P_6)_{gag}$	e (in)	
		San Jose Airport	13.9	0.5					San Jose Airport	13.9	0.5	12	
		Palo Alto	13.7	0.5	22				Palo Alto	13.7	0.52	22	
		Morgan Hill	19.5	0.7	76				Morgan Hill	19.5	0.7	6	
		MAP _{gage}	13.9						MAP _{gage}	13.9			
		(P ₆) _{gage}	0.512						(P ₆) _{gage}	0.512			
Step 6.		Mean Storm Ever	nt Precipit	ation Depth (P ₆) _{site}		Step 6.		Mean Storm Eve	nt Precipitat	ion Depth (I	P ₆) _{site}	
		$(P_6)_{\text{site}} = (P_6)_{\text{gage}}$	X (MAP _{site})/(MAP _{gage})	0.589	inches			$(P_6)_{\text{site}} = (P_6)_{\text{gage}}$	X (MAP _{site})/	(MAP _{gage})	0.589	inc
Step 7.		"a" regression co	onstant				Step 7.		"a" regression co	onstant			
•	a=	48 hour	1.963		48 ho	ur		_	48 hour	1.963		48 ho	ur
	a=	24 hour	1.582		a=	1.963		a=	24 hour	1.582		a=	1.9
	a=	12 hour	1.312					a=	12 hour	1.312			
Step 8.		Maximized Storage	ge Area				Step 8.		Maximized Stora	ge Area			
		Po =(a X Cw) X F	- 6		0.485	inches			P _o =(a X Cw) X I	D ₆		0.514	inc
Step 9.		Volume of Runoff to be Treated				Step 9.		Volume of Runoff to be Treated					
		Design Volume =	PoXAX	1ft/12in	0.699	acre-ft			Design Volume =	Po X A X 1	lft/12in	1.372	_
					30,439	cuft						59,779	cu
Step 10		Size Cistern					Step 10).	Size Cistern				
		Total Cistern Storage Volume							Total Cistern Storage Volume				
					540,000							767,000	_
					72,187	cuft						102,533	cu

NOTE

FOR THE PURPOSE OF THIS STORMWATER MANAGEMENT PLAN, THE SITE HAS BEEN LOOKED AT AS TWO DRAINAGE AREAS. RAINWATER CISTERNS WILL BE DESIGNED IN MORE DEPTH AND COORDINATED WITH THE PLUMBING ENGINEER TO WORK WITH CONSTRUCTION PHASING, THE SITE SPANNING PUBLIC RIGHT OF WAY AND IRRIGATION AND TOILET DEMANDS. THESE CISTERNS WILL BE SIZED INDIVIDUALLY BASED THEIR RESPECTIVE DRAINAGE AREAS.


HYDROMODIFICATION MAP

OTE:

PROJECT IS EXEMPT FROM HYDROMODIFICATION BECAUSE
IT IS LOCATED IN A WATERSHED THAT IS GREATER THAN

FLOOD ZONE NOTE:

THE SITE IS CURRENTLY LOCATED IN FLOOD ZONE X ACCORDING TO THE FEMA FLOOD INSURANCE RATE MAP (FIRM), PANEL 209H, MAP #06085C0209H, DATED MAY 18, 2009. FLOOD ZONE X ARE AREAS OF 0.2% ANNUAL CHANCE FLOOD; AREAS OF 1% ANNUAL CHANCE FLOOD WITH AVERAGE DEPTHS OF LESS THAN 1 FOOT OR WITH DRAINAGE AREAS LESS THAN 1 SQUARE MILE; AND AREAS PROTECTED BY LEVEES FROM 1% ANNUAL CHANCE FLOOD.

RIJE

OWNER - VALLCO PROPERTY OWNER LLC 2600 EL CAMINO REAL, SUITE 410, PALO ALTO, CA 94306 T. 650-344-1500 ARCHITECTURE - RAFAEL VINOLY ARCHITECTS 375 PEARL STREET, 31ST FLOOR, NEW YORK, NY 10038 T. 212-924-5060 ARCHITECTURE - RAFAEL VINOLY ARCHITECTS 10123 N. WOLFE ROAD, CUPERTINO, CA 95014 T. 408-627-7090 LANDSCAPE ARCHITECTURE - OLIN PARTNERSHIP LTD. 1617 JOHN F. KENNEDY BLVD. SUITE 1900, PHILIDELPHIA, PA 19103 T. 214-440-0030 CIVIL - SANDIS CIVIL ENGINEERS SURVEYORS PLANNERS, INC. 1700 S. WINCHESTER BLVD, SUITE 200, CAMPBELL, CA 95008 T. 408-636-0900 TRAFFIC - KIMLEY-HORN AND ASSOCIATES. INC. 100 W. SAN FERNANDO STREET, SUITE 250, SAN JOSE, CA 95113 T.669-800-4130 LIGHTING DESIGN - ONE LUX STUDIO 158 WEST 29TH STREET, 10TH FLOOR, NEW YORK, NY 10001 T. 212-201-5790 SIGNAGE & WAYFINDING - EXIT DESIGN 725 N. 4TH STREET, PHILADELPHIA, PA 19123 T.215-561-1950 PARKING ENGINEERING - WATRY DESIGN, INC. 2099 GATEWAY PLACE, SUITE 550, SAN JOSE, CA 95110 T.408-392-7900 FOOD SERVICE, WASTE MANAGEMENT & LOGISTICS - CINI-LITTLE 156 2ND STREET, SAN FRANCISCO, CA 94105 T.415-922-5900

DATE MARCH 23 , 2022

| PROFESSIONAL | No. C68315 | Exp. 9/30/23 | Exp. 9/30/23 | Exp. 9/30/23 | CIVIL | OF CALLED | CHAD J. BROWNING | R.C.E. NO. 68315, EXPIRES 9–30–23

NOT FOR CONSTRUCTION

DISCLAIMER
THE ARCHITECT / ENGINEER SHALL HAVE NO RESPONSIBILITY
FOR ANY LIABILITY, LOSS, COST, DAMAGE OR EXPENSE ARISING
FROM OR RELATING TO ANY USE OF THIS DOCUMENT FOR ANY
PURPOSE OTHER THAN ITS INTENDED PURPOSE ON THIS
PROJECT. THIS DOCUMENT IS TO BE CONSIDERED IN
CONJUNCTION WITH ALL RELATED DOCUMENTATION. ANY
DISCREPANCIES IDENTIFIED IN THIS DOCUMENT MUST BE
REPORTED IMMEDIATELY TO THE ARCHITECT BEFORE
PROCEEDING. CONTRACTORS MUST VERIFY ALL DIMENSIONS
PRIOR TO PROCEEDING WITH ANY WORK. ONLY FIGURED
DIMENSIONS ARE TO BE USED FOR VERIFICATION.

SB-35 MODIFICATION APPLICATION

REV	DESCRIPTION	DATE	
REV-0	SB-35 DEVELOPMENT APPLICATION	03/27/2018	
REV-1	SB-35 APPLICATION - REVISIONS	08/06/2018	
REV-2	SB-35 APPLICATION CONFORM SET	09/15/2018	
REV-3	SB-35 MODIFICATION APPLICATION	03/23/2022	
	11 0 10 13 9 NALLOO PARKWAY 7	N	
	N. WOLFE ROAD 6 5 4 12 2	STEVENS CREEK BLVD	
	AN AND NORTH ARROW		
ARCHIT	ECTS PROJECT NUMBER	708.012	

0 32' 64' 128' E:

STORM WATER MANAGEMENT

IF THIS DRAWING IS NOT 36"x48" IT IS A REDUCED PRINT;

PLAN - DETAILS

REFER TO GRAPHIC SCALE

NO SCALE