CISTERN SIZING CALCULATIONS BY DRAINAGE AREAS:

using th	ne Ul	RQM Approach					
Step 1.		Drainage Area for BMP:		17.28	acres		
- 1- p - 1.							
Step 2.	a.	Impervious Area:		10.60	acres		
	b.	Impervious ratio: (i)		61.4%			
Step 3.		Watershed runoff Coeffi		cient Cw = 0.419			
		$(Cw = 0.858i^3 - 0.7)$	li+0.04)				
Step 4.		Mean Annual Precipitation		16	inches		
Step 5.		Closest Rain Gage		San Jose Airport			
		Gage	MAP _{gage}	(P ₆) _{gag}			
		San Jose Airport Palo Alto	13.9 13.7	0.51			
		Morgan Hill	19.5	0.52 0.7			
		Worgan Fill	10.0	0.1			
		MAP _{gage}	13.9				
		(P ₆) _{gage}	0.512				
Step 6.		Mean Storm Event Precipitation Depth (P ₆) _{site}					
		$(P_6)_{\text{site}} = (P_6)_{\text{gage}}$	X (MAP _{site}	e)/(MAP _{gage})	0.589	inches	
Step 7.		"a" regression constant					
	a=	48 hour	1.963		48 ho	ur	
	_	24 hour	1.582		a=	1.963	
	a=	12 hour	1.312				
Step 8.		Maximized Storage Area					
		P _o =(a X Cw) X P ₆			0.485	inches	
Step 9.		Volume of Runoff to be Treated					
		Design Volume =	PoXAX	1ft/12in		acre-f	
					30,439	cuft	
Step 10).	Size Cistern					
		Total Cistern Sto					
					540,000	gal	
					72,187	cuft	

using th	e UF	RQM Approach				
Step 1.		Drainage Area fo	or RMD:	32.05	acres	
осер т.		Drainage Area id	DIVIE.	32.03	acies	
Step 2.	a.	Impervious Area:		20.64	acres	
	b.	Impervious ratio:	(i)	64.4%		
Step 3.		Watershed rur	ooff Coeffi	cient Cw =	0.444	
Olep 3.		$(Cw = 0.858i^3 - 0.7)$	0.777			
		(CW = 0.0301 -0.	701 10.774	11 0.04)		
Step 4.		Mean Annual Pre	ecipitation	16	inches	
Step 5.		Closest Rain Gage		San Jose Airport		
		Gage	MAP _{gage}	(P ₆) _{gage}		
		San Jose Airport Palo Alto	13.9 13.7	0.51 0.52		
		Morgan Hill	19.5	0.52		
		Worgan Filli 19.5		0.70		
		MAP _{gage}	13.9			
		(P ₆) _{gage}	0.512			
Step 6.		Mean Storm Eve	nt Precipit	ation Depth (F	P ₆)site	
		$(P_6)_{\text{site}} = (P_6)_{\text{gage}}$	X (MAP _{site}	e)/(MAP _{gage})	0.589	inche
Step 7.		"a" regression co	onstant			
	a=	48 hour	1.963		48 ho	ur
	a=	24 hour	1.582		a=	1.96
	a=	12 hour	1.312			
Step 8.		Maximized Storage				
		P _o =(a X Cw) X F	0.514	inche		
Step 9.		Volume of Runoff to be Treated				
		Design Volume =	Po X A X	1ft/12in	1.372	
					59,779	cutt
Step 10		Size Cistern				
-top 10		Total Cistern Sto				
					767,000	gal
					102,533	

NOTE:

FOR THE PURPOSE OF THIS STORMWATER MANAGEMENT PLAN, THE SITE HAS BEEN LOOKED AT AS TWO DRAINAGE AREAS. RAINWATER CISTERNS WILL BE DESIGNED IN MORE DEPTH AND COORDINATED WITH THE PLUMBING ENGINEER TO WORK WITH CONSTRUCTION PHASING, THE SITE SPANNING PUBLIC RIGHT OF WAY AND IRRIGATION AND TOILET DEMANDS. THESE CISTERNS WILL BE SIZED INDIVIDUALLY BASED THEIR RESPECTIVE DRAINAGE AREAS.

—— Roads and Highways Jurisdictional Boundary Catchments Draining to Hardened Channel and/or Tidal Areas Catchments and Subwatersheds ≥ 65% Imperviousness Subwatersheds less than 65% Reservoirs in Santa Clara Basin Date: November 2010

Continuously Hardened Channel

- Major Creeks

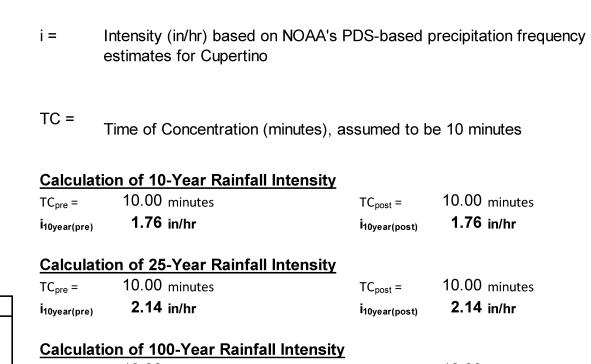
HYDROMODIFICATION MAP

NOTE:

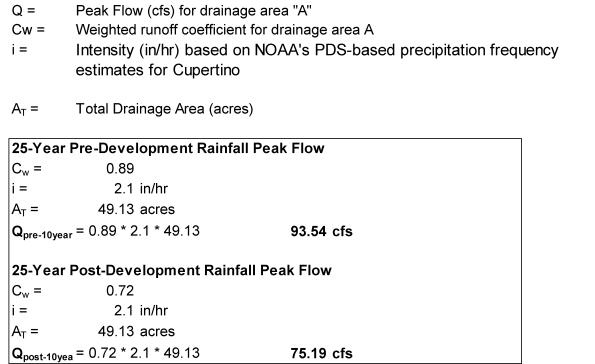
HMP APPLICABILITY MAP

CITY OF CUPERTINO

PROJECT IS EXEMPT FROM HYDROMODIFICATION BECAUSE IT IS LOCATED IN A WATERSHED THAT IS GREATER THAN 65% IMPERVIOUS.


Use the Rational Equation for Peak Flow Calcuation:

 $Q = C_w * i * A_t$


PRE AND POST DEVELOPMENT STORM DRAINAGE RUNOFF ANALYSIS:

CALCULATION OF RAINFALL INTENSITY, i

CALCULATION OF WEIGHTED "C", Cw The following equation is used to compute the weighted "c": $C_aA_a + C_bA_b + C_lA_l$ Weighted runoff coefficient for drainage area A $C_w =$ $C_i =$ Impervious Area Runoff Coefficient (c varies, see below) Pervious Area Runoff coefficient (c varies, see below) Impervious Drainage Area (acres) Pervious Drainage Area (acres) Total Drainage Area (acres) $A_T =$ Site Pre-Development Weighted "C" 0.87 ac c = 0.30Pervious Area = 49.95 ac c = 0.90Impervious Area = 50.82 ac Total Area = Site Post-Development Weighted "C"

TC =	Time of Concentration (minutes), a	ssumed to k	oe 10 minutes	Q = Peak Flow (cfs) for drainage area "A" Cw = Weighted runoff coefficient for drainage area A i = Intensity (in/hr) based on NOAA's PDS-based precipitation frequestimates for Cupertino
TC _{pre} =	10.00 minutes 1.76 in/hr	TC _{post} =	10.00 minutes 1.76 in/hr	A _T = Total Drainage Area (acres)
İ _{10year(pre}	1.70 in/nr	110year(post)	1.70 in/nr	10-Year Pre-Development Rainfall Peak Flow
Calcula TC _{pre} = i _{10year(pre}	10.00 minutes 2.14 in/hr	TC _{post} = i10year(post)	10.00 minutes 2.14 in/hr	$C_w = 0.89$ i = 1.8 in/hr $A_T = 49.13 \text{ acres}$ $Q_{\text{pre-10year}} = 0.89 * 1.8 * 49.13$ 76.93 cfs
Calcula TC _{pre} = i _{100year(pr}	10.00 minutes 2.74 in/hr	TC _{post} = i100year(post)	10.00 minutes 2.74 in/hr	10-Year Post-Development Rainfall Peak Flow C _w = 0.72 i = 1.8 in/hr A _T = 49.13 acres Q _{post-10yea} = 0.72 * 1.8 * 49.13 61.84 cfs

75.19 cfs

CALCULATION OF 25-YEAR PEAK FLOW AND WATER QUALITY FLOW, Q

CALCU	JLATION OF 100-YEAR	PEAK FLOW AND WATER QUALITY FLOW, Q
Use the	e Rational Equation for Pe Q = C _w *i*A _t	ak Flow Calcuation:
	Peak Flow (cfs) for drain Weighted runoff coefficie Intensity (in/hr) based estimates for Cupertin	nt for drainage area A on NOAA's PDS-based precipitation frequency
A _T =	Total Drainage Area (acr	es)
100-Ye	ar Pre-Development Rair	fall Peak Flow
C _w =	0.89	
i =	2.7 in/hr	
$A_T =$	49.13 acres	
Q _{pre-10ye}	_{ear} = 0.89 * 2.7 * 49.13	119.77 cfs
100-Ye	ar Post-Development Rai	nfall Peak Flow
C _w =	0.72	
j =	2.7 in/hr	

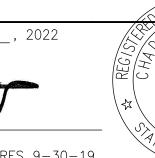
96.28 cfs

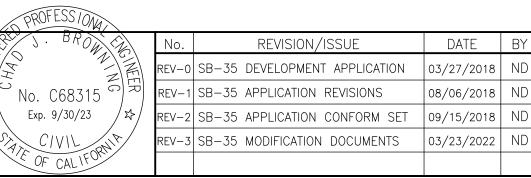
Landscape Area =

Impervious Area =

 $C_{w(post)} = 0.72$

Total Area =


15.20 ac


34.14 ac

49.33 ac

SILICON VALLEY TRI-VALLEY CENTRAL VALLEY SACRAMENTO EAST BAY/SF

MARCH 23 , 2022 DRAWN BY: APPROVED BY: 1700 S. Winchester Blvd, Suite 200, Campbell, CA 95008 I P. 408.636.0900 I F. 408.636.0999 I www.sandis.net 215028

CALCULATION OF 10-YEAR PEAK FLOW AND WATER QUALITY FLOW, Q

Use the Rational Equation for Peak Flow Calcuation:

 $Q = C_w * i * A_t$

STORMWATER TREATMENT CALCULATIONS

TENTATIVE SUBDIVISION MAP VALLCO TOWN CENTER CALIFORNIA CUPERTINO

49.13 acres

Q_{post-10yea} = 0.72 * 2.7 * 49.13

SHEET **TM8.1**

c = 0.30

c = 0.90